skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Louis, Thibaut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a reproduction of thePlanck2018 angular power spectra at ℓ > 30, and associated covariance matrices, for intensity and polarization maps at 100, 143 and 217 GHz. This uses a new, publicly available, pipeline that is part of thePSpipepackage. As a test case we use the same input maps, ancillary products, and analysis choices as in thePlanck2018 analysis, and find that we can reproduce the spectra to 0.1σprecision, and the covariance matrices to 10%. We show that cosmological parameters estimated from our re-derived products agree with the publicPlanckproducts to 0.1σ, providing an independent cross-check of thePlanckteam's analysis. Going forward, the publicly-available code can be easily adapted to use alternative input maps, data selections and analysis choices, for future optimal analysis ofPlanckdata with new ground-based Cosmic Microwave Background data. 
    more » « less
  2. We present Weak Gravitational Lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a > 5σthermal Sunyaev-Zel’dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach, we constrained the average total cluster mass,MWL, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimateMSZ, which was calibrated using X-ray observations, is biased withMSZ/MWL = (1 − bSZ) = 0.65 ± 0.05. Separating the sample into six mass bins, we find no evidence of a strong mass dependency for the mass bias, (1 − bSZ). Adopting this ACT-KiDS SZ mass calibration would bring thePlanckSZ cluster count into agreement with the counts expected from thePlanckcosmic microwave background ΛCDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average massMSZ, uncor = 3.64 × 1014 Mcompared to thePlanckcluster sample which has an average mass in the rangeMSZ, uncor = (5.5 − 8.5)×1014 M, depending on the sub-sample used. 
    more » « less
  3. Abstract The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code,mnms, this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO). 
    more » « less
  4. Abstract We present a cross-correlation analysis between 1 resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inℓover the range 103<ℓ< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <ℓ≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisℓrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-ℓmeasurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths. 
    more » « less
  5. Abstract Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that complement laboratory searches. In this work we place upper limits on a variety of models for dark matter elastic scattering with protons and electrons by combining large-scale CMB data from the Planck satellite with small-scale information from Atacama Cosmology Telescope (ACT) DR4 data. In the case of velocity-independent scattering, we obtain bounds on the interaction cross section for protons that are 40% tighter than previous constraints from the CMB anisotropy. For some models with velocity-dependent scattering we find best-fitting cross sections with a 2 σ deviation from zero, but these scattering models are not statistically preferred over ΛCDM in terms of model selection. 
    more » « less
  6. Abstract We use Atacama Cosmology Telescope (ACT) observations at 98 GHz (2015–2019), 150 GHz (2013–2019), and 229 GHz (2017–2019) to perform a blind shift-and-stack search for Planet 9. The search explores distances from 300 au to 2000 au and velocities up to 6.′3 per year, depending on the distance ( r ). For a 5 Earth-mass Planet 9 the detection limit varies from 325 au to 625 au, depending on the sky location. For a 10 Earth-mass planet the corresponding range is 425 au to 775 au. The predicted aphelion and most likely location of the planet corresponds to the shallower end of these ranges. The search covers the whole 18,000 square degrees of the ACT survey. No significant detections are found, which is used to place limits on the millimeter-wave flux density of Planet 9 over much of its orbit. Overall we eliminate roughly 17% and 9% of the parameter space for a 5 and 10 Earth-mass Planet 9, respectively. These bounds approach those of a recent INPOP19a ephemeris-based analysis, but do not exceed it. We also provide a list of the 10 strongest candidates from the search for possible follow-up. More generally, we exclude (at 95% confidence) the presence of an unknown solar system object within our survey area brighter than 4–12 mJy (depending on position) at 150 GHz with current distance 300 au < r < 600 au and heliocentric angular velocity 1 .′ 5 yr − 1 < v · 500 au r < 2 .″ 3 yr − 1 , corresponding to low-to-moderate eccentricities. These limits worsen gradually beyond 600 au, reaching 5–15 mJy by 1500 au. 
    more » « less
  7. null (Ed.)